
Finding Regressions in Mission Critical Software Work�ows

San Francisco Bay Area C++ User Group, January 10, 2023

Pejman Ghorbanzade

pejman@touca.io

mailto:pejman@touca.io

This talk is opinionated.

pejman@touca.io 2

mailto:pejman@touca.io

About Me

Founder and CEO of Touca.io (Techstars '22)

Canon Medical Informatics

VMware Carbon Black

Digi International

Passionate about maintaining software at scale

pejman@touca.io 3

https://touca.io/
mailto:pejman@touca.io

Software Engineering
Programming

Theoretical problem solving

Like sport

Software Engineering

Problem solving within business constraints

Like gardening

"Software engineering is programming integrated over time." -

Titus Winters

The Building that Moved

pejman@touca.io 4

https://www.archdaily.com/973183/the-building-that-moved-how-did-they-move-an-11000-ton-telephone-exchange-without-suspending-its-operations
mailto:pejman@touca.io

Software Gardening
Why building software is just like building a house

Why software development is not like building a

house

Software is a tractable medium.

"The most helpful thing I learnt from chess is to make good

decisions on incomplete data in a limited amount of time." -

Magnus Carlsen

pejman@touca.io 5

https://www.kore1.com/why-building-software-is-just-like-building-a-house/
https://www.washingtontechnology.org/software-development-not-like-building-house/
mailto:pejman@touca.io

Watch on

Gems - MuseumGems - Museum
ShareShare

pejman@touca.io 6

https://www.youtube.com/watch?v=ELLdITfDo1E&feature=emb_imp_woyt
https://www.youtube.com/watch?v=ELLdITfDo1E
https://www.youtube.com/channel/UCOkCFskZUDMe2kJ69v8GwMA?feature=emb_ch_name_ex
mailto:pejman@touca.io

Software Testing
Good tests are:

Cheap to Write

Easy to Read

Fast to Run

Easy to Change

Good tests have high return on investment.

Good tests give you con�dence when they pass and teach you

something when they fail.

pejman@touca.io 7

mailto:pejman@touca.io

Question

How do you measure the return on investment of
software testing?

pejman@touca.io 8

mailto:pejman@touca.io

The Cost of a Bug

Finding bugs after deployment 💰💰💰💰💰

Finding bugs before release 💰💰💰

Finding bugs during QA testing 💰💰

Finding bugs during code review 💰

Finding bugs during development

pejman@touca.io 9

mailto:pejman@touca.io

Developer Productivity

Depth: Does this test provide adequate con�dence?

Speed: Does this test provide timely feedback?

Con�dence level and feedback cycle are non-const variables.

pejman@touca.io 10

mailto:pejman@touca.io

Fun Fact
Most engineering teams think that they are doing worse than
average in following industry best practices.

pejman@touca.io 11

mailto:pejman@touca.io

Hot Take

Improving software testing is a ______ problem.

1. business

2. culture

3. design

4. tooling

pejman@touca.io 12

mailto:pejman@touca.io

Improving Culture

Active Debate

Regular technical debt review

Periodic code review policy

Pair/Ensemble programming sessions

Regular knowledge hand-off sessions

Collecting and sharing software quality metrics

pejman@touca.io 13

mailto:pejman@touca.io

Improving Culture

No Broken Windows

In criminology, the broken windows theory states that visible signs

of crime, anti-social behavior and civil disorder create an urban

environment that encourages further crime and disorder, including

serious crimes. The theory suggests that policing methods that

target minor crimes such as vandalism, loitering, public drinking,

jaywalking, and fare evasion help to create an atmosphere of order

and lawfulness.

pejman@touca.io 14

mailto:pejman@touca.io

Fun Fact
It takes 23 days for software engineers to gain con�dence that a
given code change works as they expect.

pejman@touca.io 15

mailto:pejman@touca.io

The Problem

How can we refactor half a million lines of code
without causing any side effects?

pejman@touca.io 16

mailto:pejman@touca.io

Candidate Solution A

Disadvantages

Test is dif�cult to setup

Test system is inef�cient to run

Test system is not reusable

pejman@touca.io 17

auto new_output = new_system(testcase);

auto old_output = old_system(testcase);

compare(new_output, old_output);

mailto:pejman@touca.io

Candidate Solution B

Disadvantages

Dealing with �les is no fun

Test system is hard to maintain

Test system is not reusable

pejman@touca.io 18

auto new_output = new_system(testcase);

auto new_file = write_to_file(testcase, new_output);

auto old_file = find_old_file(testcase);

compare(new_file, new_output);

mailto:pejman@touca.io

Demo Time
Approval Testing

pejman@touca.io

mailto:pejman@touca.io

Candidate Solution C

Disadvantages

Limited customization

Overkill for small projects

Requires remote computing resources

pejman@touca.io 20

auto new_output = new_system(testcase);

auto new_description = describe(new_output);

submit(testcase, new_description);

mailto:pejman@touca.io

Example

Code Under Test

pejman@touca.io 21

struct Student {

 std::string username;

 std::string fullname;

 Date birth_date;

 std::vector<Course> courses;

};

Student find_student(const std::string& username);

mailto:pejman@touca.io

Example

Regression Test

pejman@touca.io 22

#include "students.hpp"

#include "touca/touca.hpp"

int main(int argc, char* argv[]) {

 touca::workflow("students", [](const std::string& username) {

 const auto& student = find_student(username);

 touca::check("username", student.username);

 touca::check("fullname", student.fullname);

 touca::check("birth_date", student.birth_date);

 touca::check("courses", student.courses);

 });

 touca::run(argc, argv);

}

mailto:pejman@touca.io

Example

Serializing Custom Types

� CppCon2021: "Building an Extensible Type Serialization System Using Partial Template Specialization", Pejman Ghorbanzade

pejman@touca.io 23

template <>

struct touca::serializer<Date> {

 data_point serialize(const Date& value) {

 return object("Date")

 .add("year", value.year)

 .add("month", value.month)

 .add("day", value.day);

 }

};

mailto:pejman@touca.io

Motivation

Design Requirements
Intuitive developer experience

Intrinsic support for common types

Must support integral types, fractional types, Strings, Iterables, and other common standard types

Extensible design to support user-de�ned types

Must allow users to introduce logic for handling custom types

pejman@touca.io 24

mailto:pejman@touca.io

Demo Time

pejman@touca.io

mailto:pejman@touca.io

Questions

https://touca.io

https://github.com/trytouca/trytouca

https://fosstodon.org/@heypejman

https://linkedin.com/in/ghorbanzade

pejman@touca.io

pejman@touca.io 26

https://touca.io/
https://github.com/trytouca/trytouca
https://fosstodon.org/@heypejman
https://linkedin.com/in/ghorbanzade
mailto:pejman@touca.io
mailto:pejman@touca.io

